Search results for "Sylow subgroup"

showing 3 items of 3 documents

McKay natural correspondences on characters

2014

Let [math] be a finite group, let [math] be an odd prime, and let [math] . If [math] , then there is a canonical correspondence between the irreducible complex characters of [math] of degree not divisible by [math] belonging to the principal block of [math] and the linear characters of [math] . As a consequence, we give a characterization of finite groups that possess a self-normalizing Sylow [math] -subgroup or a [math] -decomposable Sylow normalizer.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)self-normalizing Sylow subgroup20C15Sylow theoremsBlock (permutation group theory)Characterization (mathematics)Centralizer and normalizerPrime (order theory)$p$-decomposable Sylow normalizerCombinatoricsMathematics::Group TheoryMcKay conjecture20C20MathematicsAlgebra & Number Theory
researchProduct

On finite minimal non-nilpotent groups

2005

[EN] A critical group for a class of groups X is a minimal non-X-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol¿fand¿s theorem on maximal Schmidt groups.

Pure mathematicsFinite groupPst-groupMathematical societyApplied MathematicsGeneral MathematicsGrups Teoria deSchmidt groupSylow subgroupSylow-permutable subgroupAlgebraMinimal non-nilpotent groupNilpotentCritical groupÀlgebraAlgebra over a fieldFinite groupClass of finite groupsMATEMATICA APLICADACritical groupVolume (compression)Mathematics
researchProduct

On some classes of supersoluble groups

2007

[EN] Finite groups G for which for every subgroup H and for all primes q dividing the index |G:H| there exists a subgroup K of G such that H is contained in K and |K:H|=q are called Y-groups. Groups in which subnormal subgroups permute with all Sylow subgroups are called PST-groups. In this paper a local version of the Y-property leading to a local characterisation of Y-groups, from which the classical characterisation emerges, is introduced. The relationship between PST-groups and Y-groups is also analysed.

p-groupNormal subgroupDiscrete mathematicsComplement (group theory)Lagrange theoremAlgebra and Number TheorySylow theoremsGrups Teoria deSylow subgroupFitting subgroupCombinatoricsSubgroupLocally finite groupPermutabilityÀlgebraIndex of a subgroupFinite groupMATEMATICA APLICADAMathematicsJournal of Algebra
researchProduct